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Abstract. Let L be a complete lattice. On L we define the so called quasi Scott topology, denoted by τqSc.
This topology is always larger than or equal to the Scott topology and smaller than or equal to the strong
Scott topology. Results concerning the above topology are given. Also, we introduce and investigate the
notions of q-continuous and q-algebraic complete lattices. Finally, we give and examine the quasi Lawson
topology on a complete lattice.

1. Preliminaries

Our reference for complete lattices are [2, 3, 8, 9]. We shall frequently denote complete lattices with their
underlying sets and write L for (L,⩽). The top element and the bottom element of a complete lattice L will
be denoted by 1L and 0L, respectively.

In what follows we denote by L a complete lattice. By a cover of L we mean a subset C of L such that
⋁C = 1L. An element x of L is called dense (see [7]) if x ∧ y ≠ 0L for all y ∈ L ∖ {0L}. The set of dense elements
of L is denoted by D(L). By a quasicover of L we mean a subset A of L such that ⋁A ∈ D(L).

A subset D of L is called directed if for every x, y ∈ D there exists z ∈ D such that x ⩽ z and y ⩽ z.

For every x ∈ L and A ⊆ L we consider the following subsets of L:

↓x = {y ∈ L ∶ y ⩽ x}, ↑x = {y ∈ L ∶ x ⩽ y}, and ↑A = ∪{↑x ∶ x ∈ A}.

A non-empty subset I of L is called an ideal if the following conditions hold:
(a) I = ↓I.
(b) I is a directed set.

The Scott topology τSc on L (see, for example, [7]) is the family of all subsets U of L such that:
(a) U = ↑U.
(b) For every directed subset D of L the condition ⋁D ∈ U implies D ∩U ≠ ∅.
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The strong Scott topology τsSc on L (see [12]) is the family of all subsets U of L such that:
(a) U = ↑U.
(b) For every directed subset D of L the condition ⋁D = 1L implies D ∩U ≠ ∅.

Let x, y ∈ L. We say that x is way below y, in symbols x ≪ y, if for every directed subset D of L the relation
y ⩽ ⋁D implies the existence of a d ∈ D with x ⩽ d. Let x, y, z,w ∈ L. The following statements are true:
(1) 0L ≪ x.
(2) If x ≪ y, then x ⩽ y.
(3) If x ⩽ y ≪ z ⩽ w, then x ≪ w.
(4) If x ≪ z and y ≪ z, then x ∨ y ≪ z.

For every x ∈ L we consider the following subsets of L:

↡x = {y ∈ L ∶ y ≪ x} and ↟x = {y ∈ L ∶ x ≪ y}.

A complete lattice L is called a continuous lattice if x = ⋁ ↡ x for every x ∈ L. An element x of L is said to
be compact if x ≪ x. The subset of all compact elements is denoted by K(L). A complete lattice L is called
algebraic if x = ⋁(↓x ∩K(L)) for every x ∈ L.

Definitions and notations concerning topological spaces follow [6].

Many researchers are interested in continuous (algebraic) lattices, Scott (Lawson) topology, and their
applications (see, for example, [1, 4, 10–25]). In section 2 we define and study the quasi Scott topology on a
complete lattice. In section 3 we present results concerning the quasi Scott continuous functions. In sections
4 and 5 we introduce and investigate the notions of q-continuous and q-algebraic complete lattices. Finally,
in section 6 we give and examine the quasi Lawson topology on a complete lattice.

2. The notion of quasi Scott topology

Notation 2.1. Let L be a complete lattice. By τqSc(L) or briefly τqSc we denote the family of all subsets U of L such
that:
(a) U = ↑U.
(b) For every directed subset D of L the condition ⋁D ∈ D(L) ∩U implies D ∩U ≠ ∅.

Proposition 2.2. Let L be a complete lattice. Then, U ∈ τqSc if and only if the following two conditions are satisfied:
(a) U = ↑U.
(b) For every subset X of L the condition ⋁X ∈ D(L) ∩ U implies the existence of a finite subset A of X such that
⋁A ∈ U.

Proof. Let U ∈ τqSc. Obviously, U = ↑U. Also, let X be a subset of L such that ⋁X ∈ D(L) ∩U. We prove that
there exists a finite subset A of X such that ⋁A ∈ U. Consider the directed subset

X+
= {⋁A ∶ A is a finite subset of X}

of L. Then, ⋁X+ = ⋁X. Hence, X+ ∩U ≠ ∅. Thus, there exists a finite subset A of X such that ⋁A ∈ U. The
converse is immediate.

The following proposition can be easily proved.

Proposition 2.3. Let L be a complete lattice. Then, the following are true:
(1) The family τqSc is a topology on L.
(2) τSc ⊆ τqSc ⊆ τsSc.
(3) τqSc is a T0-topology.

Definition 2.4. The topology τqSc on a complete lattice L is called the quasi Scott topology on L.
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Example 2.5. (i) If L is finite complete lattice, then τqSc = τSc = {U ⊆ L ∶ U = ↑U}.

(ii) If L is complete lattice such that D(L) = {1L}, then τqSc = τsSc.

(iii) Let a > 0 and (an)
∞
n=1 be a strictly increasing sequence of positive real numbers such that lim

n→∞
an = a. We consider

the complete lattice (L,⩽), where
L = {an ∶ n = 1,2, . . .} ∪ {0, a, b, c}

and 0 < b < c, 0 < an < am < a < c for n < m. Then, D(L) = {c}. We consider the subset U = {a, c} of L. Then,
U = ↑U. For the directed subset D0 = {an ∶ n = 1,2, . . .} of L we have ⋁D0 = a ∈ U but D0 ∩U = ∅. This means that
U ∉ τSc. Also, for every directed subset D of L with ⋁D = c we have c ∈ D and, therefore, c ∈ D ∩U. Hence, U ∈ τqSc.
Thus, we have τSc ≠ τqSc.

0

a1

a2

c

ab

Figure 1: The lattice L in Example 2.5(iii)

(iv) Let a > 0 and (an)
∞
n=1 be a strictly increasing sequence of positive real numbers such that lim

n→∞
an = a. We consider

the complete lattice (L,⩽), where
L = {an ∶ n = 1,2, . . .} ∪ {0, a, b}

and 0 < an < am < a < b for n < m. Then, D(L) = L ∖ {0}. We consider the subset U = {a, b} of L. Then, U = ↑U.
For the directed subset D0 = {an ∶ n = 1,2, . . .} of L we have ⋁D0 = a ∈ D(L) ∩U but D0 ∩U = ∅. This means that
U ∉ τqSc. Also, for every directed subset D of L with ⋁D = b we have b ∈ D and, therefore, b ∈ D∩U. Hence, U ∈ τsSc.
Thus, we have τqSc ≠ τsSc.
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Figure 2: The lattice L in Example 2.5(iv)



D. N. Georgiou, A. C. Megaritis / Filomat 29:1 (2015), 193–207 196

(v) Let X be a topological space and O(X) be the set of all open subsets of X with the inclusion as order. Then, the
quasi Scott topology on O(X) is the family of all subsetsH of O(X) such that:
(a) The conditions U ∈H, V ∈ O(X), and U ⊆ V imply V ∈H.
(b) For every family {Ui ∶ i ∈ I} ⊆ O(X) such that ⋃{Ui ∶ i ∈ I} is a dense subset of X and ⋃{Ui ∶ i ∈ I} ∈ H, there
exists a finite subset J of I such that ⋃{Ui ∶ i ∈ J} ∈H.

The following proposition can be easily proved.

Proposition 2.6. Let L be a complete lattice and τc
qSc(L) = {L ∖U ∶ U ∈ τqSc}. Then, the family τc

qSc(L) consists of
all subsets F of L such that:
(a) F = ↓F.
(b) For every directed subset D of L the conditions ⋁D ∈ D(L) and D ⊆ F imply ⋁D ∈ F.

Proposition 2.7. Let L be a complete lattice with the quasi Scott topology and A ⊆ L. If A is a complete lattice and
D(A) ⊆ D(L), then the subspace topology on A is contained in the quasi Scott topology on A.

Proof. The subspace topology on A is the family

τqSc(L)∣A = {A ∩U ∶ U ∈ τqSc(L)}.

We prove that τqSc(L)∣A ⊆ τqSc(A). Let UA ∈ τqSc(L)∣A. Then, there exists U ∈ τqSc(L) such that UA = A ∩ U.
Obviously, UA = ↑UA with respect to A. Let D be a directed subset of A such that ⋁D ∈ D(A) ∩ UA. Since,
D(A) ⊆ D(L) and U ∈ τqSc(L), we have D ∩ UA ≠ ∅. Thus, UA ∈ τqSc(A) and, consequently, τqSc(L)∣A ⊆

τqSc(A).

Corollary 2.8. Let L be a complete lattice with the quasi Scott topology and A ∈ τqSc(L). If A is a complete lattice
and D(A) ⊆ D(L), then the quasi Scott topology on A and the subspace topology on A coincide.

Proof. By Proposition 2.7, τqSc(L)∣A ⊆ τqSc(A). Moreover, since A ∈ τqSc(L), we have τqSc(A) ⊆ τqSc(L)∣A.
Therefore, τqSc(A) = τqSc(L)∣A.

Proposition 2.9. Let L be a complete lattice and x ∈ L. Then,

L∖↓x = {y ∈ L ∶ y ≰ x} ∈ τqSc.

Proof. It is known that L∖↓x ∈ τSc. By Proposition 2.3(2), τSc ⊆ τqSc. Hence, L∖↓x ∈ τqSc.

Let L be a complete lattice. For any net (x j) j∈J the lower limit is defined as follows

lim j∈Jx j = sup
j∈J

inf
i≥ j

xi.

ByDwe denote the class of all those pairs ((x j) j∈J,x) consisting of a net (x j) j∈J on L and an element x ∈ D(L)
such that x ⩽ lim j∈Jx j. If ((x j) j∈J,x) ∈ D, then we say that x is an D-limit of (x j) j∈J and we write briefly
x ≡D lim j∈J x j.

Notation 2.10. Let L be a complete lattice. By τ(D) we denote the family of all subsets U of L satisfying the following
conditions:
(a) ↑u ∈ U for every u ∈ (L ∖D(L)) ∩U.
(b) If x ≡D lim j∈J x j and x ∈ U, then there exists j0 ∈ J such that x j ∈ U for every j ≥ j0.

The following proposition can be easily proved.

Proposition 2.11. Let L be a complete lattice. Then, the family τ(D) is a topology on L.

Proposition 2.12. For the topologies τqSc and τ(D) on a complete lattice L we have τqSc = τ(D).
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Proof. We prove that τ(D) ⊆ τqSc. Let U ∈ τ(D). First we prove U = ↑U. It suffices to prove that ↑u ∈ U for
every u ∈ D(L)∩U. Let u ∈ D(L)∩U and x ∈ L such that u ⩽ x. We consider the net (x j) j∈J, where x j = x, j ∈ J.
Then,

u ⩽ x = lim j∈Jx j.

From the definition of τ(D) we conclude that there exists j0 ∈ J such that x j ∈ U for every j ≥ j0. This means
that x ∈ U.

Now, let D be a directed subset of L such that⋁D ∈ D(L)∩U. Consider the net (xd)d∈D with xd = d. Then,

inf
a⩾d

xa = d

and, hence,
limd∈Dxd =⋁D.

Therefore,
⋁D ≡D lim

d∈D
xd.

By assumption there exists d0 ∈ D such that xd = d ∈ U for every d ⩾ d0. Thus, D ∩ U ≠ ∅ and, therefore,
τ(D) ⊆ τqSc.

We prove that τqSc ⊆ τ(D). Let U ∈ τqSc. We take a net (x j) j∈J and x ∈ U with x ≡D lim j∈J x j. Then,
x ⩽ lim j∈Jx j. Consider the directed subset

D = {inf
i≥ j

xi ∶ j ∈ J}

of L. Then, x ⩽ ⋁D. Since U = ↑ U, we have ⋁D ∈ U. Moreover, since x ∈ D(L) and x ⩽ ⋁D, we have
⋁D ∈ D(L). By assumption there exists d0 ∈ D such that d0 ∈ D ∩ U. By the definition of D, d0 = infi≥ j0 xi
for some j0 ∈ J. Hence, d0 ⩽ xi for all i ≥ j0. Since U = ↑U and d0 ∈ U, we have xi ∈ U for all i ≥ j0. Thus,
τqSc ⊆ τ(D).

3. Quasi Scott continuous functions

Definition 3.1. Let L1 and L2 be two complete lattices. A function f ∶ L1 → L2 is called quasi Scott continuous
if for every V ∈ τqSc(L2) we have f−1(V) ∈ τqSc(L1).

Proposition 3.2. Let f ∶ L1 → L2 be a quasi Scott continuous function. Then, f is monotone.

Proof. Let x, y ∈ L1 with x ⩽ y. We show that f (x) ⩽ f (y). Suppose that f (x) ≰ f (y) and set

V = L2∖↓ f (y).

Then, f (x) ∈ V. By Proposition 2.9, V ∈ τqSc(L2). Hence, f−1(V) ∈ τqSc(L1) and, consequently, ↑ f−1(V) =

f−1(V). Since x ∈ f−1(V) and x ⩽ y, we have y ∈ f−1(V) or f (y) ∈ V which is a contradiction. Thus,
f (x) ⩽ f (y).

The following proposition can be easily proved.

Proposition 3.3. Let f ∶ L1 → L2 be a function. The following conditions are equivalent:
(1) f is quasi Scott continuous.
(2) For every F ∈ τc

qSc(L2) we have f−1(F) ∈ τc
qSc(L1).

Proposition 3.4. Let f ∶ L1 → L2 be a quasi Scott continuous function. The following statements are true:
(1) For every directed subset D of L1 with ⋁D ∈ D(L1) we have

f (⋁D) =⋁ f (D).

(2) For every net (x j) j∈J with lim j∈Jx j ∈ D(L1) we have

f (lim j∈Jx j) ⩽ lim j∈J f (x j).
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Proof. (1) Let D be a directed subset of L1 with ⋁D ∈ D(L1). We prove that f (⋁D) = ⋁ f (D). By Proposition
3.2, ⋁ f (D) ⩽ f (⋁D). So, it suffices to prove that f (⋁D) ⩽ ⋁ f (D). We set

x =⋁D and a =⋁ f (D).

We will show that f (x) ⩽ a. Suppose that f (x) ≰ a. We consider the set

V = L2∖↓a.

Then, f (x) ∈ V. By Proposition 2.9, V ∈ τqSc(L2). Hence, U = f−1(V) ∈ τqSc(L1). Also, x ∈ D(L1) ∩ U.
Hence, there exists d ∈ D such that d ∈ U. It follows that f (d) ∈ L2∖↓a, that is, f (d) ≰ a = ⋁ f (D) which is a
contradiction.

(2) Let (x j) j∈J be a net and x = lim j∈Jx j ∈ D(L1). We prove that f (x) ⩽ lim j∈J f (x j). Consider the directed
subset

D = {inf
i≥ j

xi ∶ j ∈ J}

of L1. Then, x = ⋁D. Let d ∈ D. Then, there exists j0 ∈ J such that d = inf
i≥ j0

xi. By Proposition 3.2,

f (d) = f (inf
i≥ j0

xi) ⩽ inf
i≥ j0

f (xi).

Therefore,
lim j∈J f (x j) = sup

j∈J
inf
i≥ j

f (xi) ⩾ f (d).

It follows that lim j∈J f (x j) ⩾ f (d) for every d ∈ D. Hence, ⋁ f (D) ⩽ lim j∈J f (x j). ¿From (1) we conclude

f (lim j∈Jx j) = f (⋁D) =⋁ f (D) ⩽ lim j∈J f (x j).

Proposition 3.5. Let f ∶ L1 → L2 be a monotone function. If f (x) ∈ D(L2) for any x ∈ D(L1) and f (⋁D) = ⋁ f (D)

for every directed subset D of L1 with ⋁D ∈ D(L1), then f is quasi Scott continuous.

Proof. Let V ∈ τqSc(L2). We prove that f−1(V) ∈ τqSc(L1). Since the function f is monotone, ↑ f−1(V) =

f−1(V). Now let D be a directed subset of L1 with ⋁D ∈ D(L1) ∩ f−1(V). Then, f (⋁D) ∈ D(L2) and
f (⋁D) = ⋁ f (D) ∈ V. Also, since f is monotone, f (D) is a directed subset of L2. Hence, there exists
y ∈ f (D) ∩V. It follows that there exists x ∈ D such that y = f (x) and x ∈ f−1(V). Thus, D ∩ f−1(V) ≠ ∅ and,
therefore, f−1(V) ∈ τqSc(L1).

4. q-continuous complete lattices

Definition 4.1. Let L be a complete lattice and x, y ∈ L. We say that x is quasi way below y, in symbols x ≪q y,
if the following two conditions are satisfied:
(a) x ⩽ y.
(b) For every directed subset D of L the relations y ⩽ ⋁D and ⋁D ∈ D(L) imply the existence of a d ∈ D with
x ⩽ d.

Proposition 4.2. Let L be a complete lattice and x, y ∈ L. Then, x ≪q y if and only if the following two conditions
are satisfied:
(a) x ⩽ y.
(b) For every subset X of L the relations y ⩽ ⋁X and ⋁X ∈ D(L) imply the existence of a finite subset A of X such
that x ⩽ ⋁A.
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Proof. Let x ≪q y. Obviously, x ⩽ y. Let X be a subset of L such that y ⩽ ⋁X and ⋁X ∈ D(L). Consider the
directed subset

X+
= {⋁A ∶ A is a finite subset of X}

of L. Then, ⋁X+ = ⋁X. Hence, there exists a finite subset A of X such that x ⩽ ⋁A. The converse is
immediate.

The following proposition can be easily proved.

Proposition 4.3. Let L be a complete lattice and x, y, z,w ∈ L. The following statements are true:
(1) If x ≪ y, then x ≪q y. Particularly, 0L ≪q y.
(2) If x ≪q y and y ≪q z, then x ≪q z.
(3) If x ⩽ y ≪q z ⩽ w, then x ≪q w.
(4) If x ≪q z and y ≪q z, then x ∨ y ≪q z.

Proposition 4.4. Let L be a complete lattice and x, y ∈ L. Then, the following two statements are equivalent:
(1) x ≪q y.
(2) x ⩽ y and for every ideal I of L the relations y ⩽ ⋁I and ⋁I ∈ D(L) imply x ∈ I.

Proof. (1) implies (2): Suppose that x ≪q y and let I be an ideal of L such that y ⩽ ⋁I and ⋁I ∈ D(L). Since
x ≪q y and I is directed, there exists z ∈ I such that x ⩽ z. Now, since I = ↓I, we have x ∈ I.

(2) implies (1): Let D be a directed subset of L such that y ⩽ ⋁D and ⋁D ∈ D(L). We prove that there exists
d ∈ D with x ⩽ d. Set I = ↓D. We observe that I is an ideal and ⋁I = ⋁D. Hence, x ∈ I and, therefore, there
exists d ∈ D such that x ⩽ d.

For every x ∈ L we consider the following subsets of L:

↡q x = {y ∈ L ∶ y ≪q x} and ↟q x = {y ∈ L ∶ x ≪q y}.

Remark 4.5. If the condition (b) of Definition 4.1 satisfied and y ∈ D(L), then x ≪ y and, hence, x ⩽ y. It follows
that if y ∈ D(L), then ↡q y =↡y.

Proposition 4.6. Let L be a complete lattice and x ∈ L. Then, IntτqSc(↑ x) ⊆ ↟q x (By IntτqSc(↑ x) we denote the
interior of ↑x in the topology τqSc).

Proof. Let y ∈ IntτqSc(↑ x) ⊆ ↑ x. Then, x ⩽ y. Now, let D be a directed subset of L such that y ⩽ ⋁D and
⋁D ∈ D(L). Since y ∈ IntτqSc(↑x), y ⩽ ⋁D, and IntτqSc(↑x) = ↑IntτqSc(↑x), we have ⋁D ∈ IntτqSc(↑x). So,

⋁D ∈ D(L) ∩ IntτqSc(↑x).

Since IntτqSc(↑ x) ∈ τqSc, there exists d ∈ D such that d ∈ IntτqSc(↑ x) ⊆ ↑ x. So, x ⩽ d. By the above we have
x ≪q y. Thus, y ∈ ↟q x.

Definition 4.7. A complete lattice L is called q-continuous if

x =⋁↡q x =⋁{y ∈ L ∶ y ≪q x} for every x ∈ L.

We note that the notion of q-continuous complete lattice is quite different from the well known notion of
quasi continuous complete lattice (see, for example, [8]).

Remark 4.8. If L is q-continuous, then by Proposition 4.3(4) for all x ∈ L, the subset ↡q x of L is directed.
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Example 4.9. (i) Every continuous complete lattice L is q-continuous. Indeed, let x ∈ L. Then,

{y ∈ L ∶ y ≪ x} ⊆ {y ∈ L ∶ y ≪q x} ⊆ {y ∈ L ∶ y ⩽ x}.

Therefore,
x =⋁{y ∈ L ∶ y ≪ x} ⩽⋁{y ∈ L ∶ y ≪q x} ⩽⋁{y ∈ L ∶ y ⩽ x} = x

which means that x = ⋁↡q x.
Particularly, every complete chain and every finite complete lattice are q-continuous.

(ii) Consider the complete lattice (L,⩽), where

L = {0,1,2, . . .} ∪ {a, b, c,d},

0 < 1 < 2 < . . . < b, 0 < c < d, and 0 < a < b < d. Then, D(L) = {d}. We observe that ↡q n = {0, . . . ,n}, n = 0,1,2, . . . ,
↡q a = {0, a}, ↡q b = {0,1,2, . . .} ∪ {a, b}, ↡q c = {0, c}, and ↡q d = L. Therefore, L is q-continuous. We prove that L
is not continuous. It suffices to prove that a ∉ ↡ a. Indeed, consider the directed subset D = {0,1,2, . . .} of L. Then,
a ⩽ b = ⋁D but there not exists n ∈ D such that a ⩽ n. Thus, ↡a = {0} and, hence, ⋁↡a ≠ a. This means that L is not
continuous.

0

1

2

b

a

d

c

Figure 3: The lattice L in Example 4.9(ii)

(iii) Let X be a topological space andO(X) be the set of all open subsets of X with the inclusion as order (see Example
2.5(v)). It follows that the complete lattice O(X) is q-continuous if and only if for every x ∈ X and for every open
neighborhood U of x there exists an open neighborhood V of x satisfying the following conditions:
(a) V ⊆ U.
(b) For every family {Ui ∶ i ∈ I} ⊆ O(X) such that ⋃{Ui ∶ i ∈ I} is a dense subset of X and U ⊆ ⋃{Ui ∶ i ∈ I}, there
exists a finite subset J of I such that V ⊆ ⋃{Ui ∶ i ∈ J}.

Definition 4.10. (see [12]) A complete lattice L is called weakly continuous if

x =⋁{y ∈ L ∶ y ≪w x} for every x ∈ L.

We write x ≪w y, if the following two conditions are satisfied:
(a) x ⩽ y.
(b) For every directed subset D of L the relation ⋁D = 1L implies the existence of a d ∈ D with x ⩽ d.

Example 4.11. (i) Every q-continuous complete lattice L is weakly continuous. Indeed, let x ∈ L. Then,

{y ∈ L ∶ y ≪q x} ⊆ {y ∈ L ∶ y ≪w x} ⊆ {y ∈ L ∶ y ⩽ x}.
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Therefore,
x =⋁{y ∈ L ∶ y ≪q x} ⩽⋁{y ∈ L ∶ y ≪w x} ⩽⋁{y ∈ L ∶ y ⩽ x} = x

which means that x = ⋁{y ∈ L ∶ y ≪w x}.

(ii) Consider the complete lattice (L,⩽), where L = [1,2] ∪ {0, a, b}, 0 < x < y < b for every x, y ∈ [1,2] with x ≠ y,
and 1 < a < 2. Then, D(L) = L ∖ {0}. We observe that ↡q a = {0,1} and, hence, a ≠ ⋁↡q a. This means that L is not
q-continuous. Also, we observe that L is weakly continuous.

0

1

a

2

b

Figure 4: The lattice L in Example 4.11(ii)

Proposition 4.12. Let L be a q-continuous complete lattice. Then, the following statements are true:
(1) If x ≪q y ⩽ ⋁D, where ⋁D ∈ D(L), for a directed subset D of L, then there exists d ∈ D with x ≪q d.
(2) If x ≪q z, where z ∈ D(L), then there exists y ∈ L such that x ≪q y ≪q z.

Proof. (1) Let x, y ∈ L and let D be a directed subset of L such that x ≪q y ⩽ ⋁D and ⋁D ∈ D(L). We set

I =⋃{↡q d ∶ d ∈ D}.

We observe that I is an ideal and ⋁I = ⋁D. By Proposition 4.4, x ∈ I which means that x ≪q d for some d ∈ D.

(2) Let x ≪q z, where z ∈ D(L). Set D = ↡q z. Then, D is a directed subset of L. Since L is q-continuous,
z = ⋁↡q z = ⋁D. From (1) there exists y ∈ D with x ≪q y. Hence, x ≪q y ≪q z.

Corollary 4.13. Let L be a q-continuous complete lattice and x ∈ L. Then, ↟q x ∈ τqSc.

Proof. By Proposition 4.3(3), ↟q x = ↑ (↟q x). Let D be a directed subset of L such that ⋁D ∈ D(L)∩ ↟q x. We
prove that D∩ ↟q x ≠ ∅. Indeed, by Proposition 4.12(1), there exists d ∈ D with x ≪q d. Hence, d ∈ D∩ ↟q x.

Proposition 4.14. Let L be a q-continuous complete lattice and x ∈ L. Then, ↟q x = IntτqSc(↑x).

Proof. By Proposition 4.6 it suffices to prove that ↟q x ⊆ IntτqSc(↑x). By Corollary 4.13, ↟q x ∈ τqSc. Moreover,
↟q x ⊆ ↑x. Therefore, ↟q x ⊆ IntτqSc(↑x).

Proposition 4.15. Let L be a q-continuous complete lattice and x ∈ D(L). Then, the family {↟q u ∶ u ≪q x} is a
neighborhood basis of x with respect to τqSc.

Proof. Let U ∈ τqSc such that x ∈ U. We set D = ↡q x. Since L is q-continuous, the subset ↡q x of L is directed
(see Remark 4.8) and x = ⋁D. Moreover, ⋁D ∈ D(L). Hence, D ∩ U ≠ ∅. It follows that there exists u ∈ U
such that u ≪q x. By Corollary 4.13, ↟q u ∈ τqSc. We prove that ↟q u ⊆ U. Indeed, let y ∈ ↟q u. Then, u ≪q y and,
therefore, u ⩽ y. Since U = ↑U and u ∈ U, we have y ∈ U. Thus, ↟q u ⊆ U.
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Corollary 4.16. Let L be a q-continuous complete lattice with D(L) = L ∖ {0L}. Then, the family {↟q x ∶ x ∈ L} is a
base for the quasi Scott topology τqSc on L.

Example 4.17. The condition D(L) = L ∖ {0L} cannot be omitted in Corollary 4.16. Indeed, let (an)
∞
n=1 and (bn)

∞
n=1

be two strictly increasing sequences of positive real numbers such that lim
n→∞

an = a > 0 and lim
n→∞

bn = b > 0. We

consider the complete lattice (L,⩽), where

L = {a1, a2, . . .} ∪ {b1, b2, . . .} ∪ {0, a, b, c,d}

and 0 < b1 < c < d, 0 < an < am < a < b < d, 0 < bn < bm < b < d for n < m. Then, D(L) = {b,d}. We observe that

↡q an = {0, a1 . . . , an}, ↡q bn = {0, b1 . . . , bn}, n = 1,2, . . . ,

↡q a = {0, a1, a2, . . .}, ↡q b = {0, b1, b2, . . .}, ↡q c = {0, b1, c}, and ↡q d = L.

Indeed, we will show, for example, that ↡q a = {0, a1, a2, . . .}. It suffices to prove that a ∉ ↡q a. We consider the directed
subset D = {b1, b2, . . .} of L. Then,

a ⩽ b =⋁D ∈ D(L)

but there not exists bn ∈ D such that a ⩽ bn.
By the above we have an = ⋁ ↡q an for n = 1,2, . . . , bn = ⋁ ↡q bn for n = 1,2, . . . , a = ⋁ ↡q a, b = ⋁ ↡q b, c = ⋁ ↡q c,

and d = ⋁ ↡q d. Therefore, L is a q-continuous complete lattice.
Now, we consider the subset U = {b2, b3, . . .} ∪ {a, b,d} of L. Then, U ∈ τqSc and a ∈ U. This means that U is an

open neighborhood of a in the topology τqSc. We observe that there not exists x ∈ L such that a ∈ ↟q x ⊆ U. Thus, the
family {↟q x ∶ x ∈ L} is not a base for the quasi Scott topology τqSc on L.

b1

b2

b3

0

a1

a2

c
a

b

d

Figure 5: The lattice L in Example 4.17

Definition 4.18. Let L be a complete lattice. A subset B of L is called a q-basis for L if for every x ∈ L there is
a directed subset Dx of B such that Dx ⊆ ↡q x and ⋁Dx = x.

Proposition 4.19. A complete lattice is q-continuous if and only if it has a q-basis.

Proof. Let L be a q-continuous complete lattice. We prove that L is a q-basis of L. Indeed, let x ∈ L. We set
Dx =↡q x. Then, Dx is a directed subset of L and ⋁Dx = x.

Conversely, let L be a complete lattice with B as its q-basis and x ∈ L. We prove that x = ⋁↡q x. Indeed,
there is a directed subset Dx of B such that Dx ⊆ ↡q x and ⋁Dx = x. Hence, x = ⋁Dx ⩽ ⋁ ↡q x. Moreover,
⋁↡q x ⩽ x. Thus, x = ⋁↡q x.
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5. q-algebraic complete lattices

Definition 5.1. Let L be a complete lattice. An element x of L is said to be q-compact if x ≪q x. The subset of
all q-compact elements is denoted by Kq(L).

The following proposition can be easily proved.

Proposition 5.2. Let L be a complete lattice. The following statements are true:
(1) 0L ∈ Kq(L).
(2) If x, y ∈ Kq(L), then x ∨ y ∈ Kq(L).
(3) If x ⩽ k ⩽ y with k ∈ Kq(L), then x ≪q y.

Proposition 5.3. Let L be a complete lattice and x ∈ Kq(L). Then, ↑x ∈ τqSc.

Proof. Obviously, ↑x = ↑(↑x). Now, let D be a directed subset of L such that ⋁D ∈ D(L)∩ ↑x. Then, x ⩽ ⋁D.
Since x ∈ Kq(L), there exists d ∈ D such that x ⩽ d. Hence, d ∈ ↑x. It follows that D∩ ↑x ≠ ∅.

Definition 5.4. A complete lattice L is called q-algebraic if

x =⋁(↓x ∩Kq(L)) for every x ∈ L.

Remark 5.5. If L is q-algebraic, then by Proposition 5.2(3) for all x ∈ L, the subset ↓x ∩Kq(L) of L is directed.

Example 5.6. (i) Every algebraic complete lattice L is q-algebraic. Indeed, let x ∈ L. Then,

↓x ∩K(L) ⊆ ↓x ∩Kq(L) ⊆ ↓x.

Therefore,
x =⋁(↓x ∩K(L)) ⩽⋁(↓x ∩Kq(L)) ⩽⋁↓x = x

which means that x = ⋁(↓x ∩Kq(L)).
Particularly, every finite linearly ordered set is q-algebraic.

(ii) Consider the complete lattice (L,⩽), where L = [0,1] ∪ {a, b}, x < y < b for every x, y ∈ [0,1] with x ≠ y, and
0 < a < 1. Since K(L) = {0, a, b}, the complete lattice L is not algebraic. We observe that Kq(L) = L. Hence,

⋁(↓x ∩Kq(L)) =⋁↓x = x

for every x ∈ L which means that L is q-algebraic.

0

a

1

b

Figure 6: The lattice L in Example 5.6(ii)

Proposition 5.7. Let L be a q-algebraic complete lattice and x ∈ D(L). Then, the family

{↑a ∶ a ⩽ x and a ∈ Kq(L)}

is a neighborhood basis of x with respect to τqSc.
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Proof. Let U ∈ τqSc such that x ∈ U. We set D = ↓x∩Kq(L). Since L is q-algebraic, the subset ↓x∩Kq(L) of L is
directed (see Remark 5.5) and x = ⋁D. Moreover, ⋁D ∈ D(L). Hence, D ∩U ≠ ∅. It follows that there exists
a ∈ U such that a ⩽ x and a ∈ Kq(L). By Proposition 5.3, ↑ a ∈ τqSc. We prove that ↑ a ⊆ U. Indeed, let y ∈ ↑ a.
Then, a ⩽ y. Since U = ↑U and a ∈ U, we have y ∈ U. Thus, ↑a ⊆ U.

Corollary 5.8. Let L be a q-algebraic complete lattice with D(L) = L ∖ {0L}. Then, the family {↑x ∶ x ∈ Kq(L)} is a
base for the quasi Scott topology τqSc on L.

Remark 5.9. The conditionD(L) = L∖{0L} cannot be omitted in Corollary 5.8. Indeed, we consider the continuous
complete lattice L in Example 4.17. We observe that Kq(L) = L ∖ {a, b}. Therefore, L is q-algebraic. Let

U = {b2, b3, . . .} ∪ {a, b,d}.

Then, U ∈ τqSc and a ∈ U. This means that U is an open neighborhood of a in the topology τqSc. Since a ∉ Kq(L), there
not exists x ∈ Kq(L) with a ∈ ↑x ⊆ U. Thus, the family {↑x ∶ x ∈ Kq(L)} is not a base for the quasi Scott topology τqSc
on L.

Proposition 5.10. Every q-algebraic complete lattice is q-continuous.

Proof. Let L be a q-algebraic complete lattice and let x ∈ L. We prove that x = ⋁↡q x. We set

D = ↓x ∩Kq(L).

Then, D is directed and x = ⋁D. Let y ∈ D. Then, y ≪q y ⩽ x and, therefore, y ∈ ↡q x. This means that D ⊆ ↡q x
and, hence, x = ⋁D ⩽ ⋁↡q x. Moreover,

⋁↡q x =⋁{y ∈ L ∶ y ≪q x} ⩽⋁{y ∈ L ∶ y ⩽ x} = x

which means that x = ⋁↡q x.

Example 5.11. Let L = [0,1] with the usual order. Obviously L is q-continuous. Since Kq(L) = {0}, the complete
lattice L is not q-algebraic.

Proposition 5.12. Let L be a q-algebraic complete lattice and x, y ∈ L. The following statements are equivalent:
(1) x ⩽ y.
(2) ↓x ∩Kq(L) ⊆ ↓y ∩Kq(L).

Proof. (1) implies (2). It is obvious.

(2) implies (1). Suppose that ↓x ∩Kq(L) ⊆ ↓y ∩Kq(L). Then,

⋁(↓x ∩Kq(L)) ⩽⋁(↓y ∩Kq(L)).

Since L is q-algebraic,
x =⋁(↓x ∩Kq(L)) and y =⋁(↓y ∩Kq(L)).

Thus, x ⩽ y.

Corollary 5.13. Let L be a q-algebraic complete lattice and x, y ∈ L. The following statements are equivalent:
(1) x ⩽ y.
(2) For every U ∈ τqSc, x ∈ U implies y ∈ U.

Proof. (1) implies (2). It is obvious since U = ↑U.

(2) implies (1). By Proposition 5.12 it suffices to prove that

↓x ∩Kq(L) ⊆ ↓y ∩Kq(L).

Let a ∈ ↓x∩Kq(L) and set U = ↑a. Then, x ∈ U and a ∈ Kq(L). By Proposition 5.3, U ∈ τqSc. Hence, y ∈ U which
means that a ⩽ y or a ∈ ↓y.
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6. The quasi Lawson topology

Recall the notion of the Lawson topology (see [8]). Let L be a complete lattice. The lower topology on L,
denoted here by τl, is the topology, which has as a subbasis the family of all sets of the form L∖ ↑ x, x ∈ L.
The topology τl ∨ τSc is called the Lawson topology and is denoted here by τL.

Definition 6.1. Let L be a complete lattice. The topology τl ∨ τqSc is called the quasi Lawson topology and is
denoted by τqL or τqL(L). That is the quasi Lawson topology has as a subbasis the sets U, with U ∈ τqSc,
together with the sets L∖↑x, x ∈ L.

Remark 6.2. Let L be a complete lattice. Then, the following are true:
(1) τSc ⊆ τqSc ⊆ τsSc.
(2) τSc ⊆ τL ⊆ τqL.
(3) τSc ⊆ τqSc ⊆ τqL.

The relations between the topologies are summarized in the following diagram, where “→” means “ ⊆ ”.

τqL τsSc

τL

>>

τqSc

aa <<

τSc

aa <<

Figure 7: Relations between the topologies τSc, τqSc, τsSc, τL, τqL

The proof of the following proposition is a straightforward verification of the relation τL ⊆ τqL and the
separation axioms of τL.

Proposition 6.3. (1) For any complete lattice, τqL is T1.
(2) For any continuous complete lattice, τqL is Hausdorff.

Proposition 6.4. Let L be a complete lattice. The following statements are true:
(1) The sets U∖↑F, where U ∈ τqSc and F is a finite subset of L, form a basis for τqL.
(2) If U = ↑U, then U ∈ τqL if and only if U ∈ τqSc.

Proof. (1) It is obvious.

(2) Obviously, τqSc ⊆ τqL. Let U ∈ τqL such that U = ↑U. We prove that U ∈ τqSc. Let D be a directed subset of
L such that ⋁D ∈ D(L) ∩ U. By (1) there exist V ∈ τqSc and a finite subset F of L such that ⋁D ∈ V∖ ↑F ⊆ U.
Therefore, D ∩ V ≠ ∅. Let d ∈ D ∩ V. Since ⋁D ∉ ↑ F, we have d ∉ ↑ F. It follows that d ∈ V∖ ↑ F ⊆ U which
means that D ∩U ≠ ∅. Thus, U ∈ τqSc.

Example 6.5. Consider the complete lattice L given in Example 2.5(iii). By Proposition 6.4(2) and from the similar
proposition for the topologies τSc and τL (see Proposition III-1.6.(i) of [8]) we have τqSc ≠ τL and τqL ≠ τL.

Remark 6.6. For a complete lattice L the topology τL is always compact. But, in general, the topology τqL is not
compact (see Example 6.8).

Proposition 6.7. Let L be a complete lattice. Every cover

{Ui ∈ τqSc ∶ i ∈ I}⋃{L∖↑x j ∶ j ∈ J}

of L, where ⋁{x j ∶ j ∈ J} ∈ D(L), contains a finite subcover.
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Proof. Let {Ui ∈ τqSc ∶ i ∈ I}⋃{L∖ ↑ x j ∶ j ∈ J} be an open cover of L such that ⋁{x j ∶ j ∈ J} ∈ D(L). We set
x = ⋁{x j ∶ j ∈ J}. Then, x ∈ D(L) and

⋃{L∖↑x j ∶ j ∈ J} = L ∖⋂{↑x j ∶ j ∈ J} = L∖↑x.

Since x ∉ L∖↑x, there exists i0 ∈ I such that x ∈ Ui0 . By Proposition 2.2 there exist a finite subset { j1, . . . , jn} of
J such that

x j1 ∨ . . . ∨ x jn ∈ Ui0 .

Moreover, since Ui0 ∈ τqSc, we have Ui0 = ↑Ui0 . Hence,

L = Ui0⋃(L∖↑x j1)⋃ . . .⋃(L∖↑x jn).

Example 6.8. Consider the complete lattice (L,⩽), where

L = {0,1,2, . . .} ∪ {a, b, c},

0 < 1 < 2 < . . . < b < c, and 0 < a < c. It is known that the topology τL is compact. But the topology τqL is not compact.
Indeed, the cover {L∖↑n ∶ n = 1,2, . . .} ∪ {b, c} of L is open with respect to the topology τqSc and does not contain a
finite subcover.

0

1

2

b

a

c

Figure 8: The lattice L in Example 6.8

Proposition 6.9. Let L be a q-continuous complete lattice. Then, τqL is Hausdorff.

Proof. Let x, y ∈ L with x ≠ y. Without loss of generality suppose that x ≰ y. Since L is q-continuous, x = ⋁↡q x.
We show that there exists z ∈ L such that z ≪q x and z ≰ y. Indeed, suppose that for every z ≪q x we have
z ⩽ y. Then, y is an upper bound of ↡q x and, hence,

x =⋁↡q x ⩽ y

which is a contradiction. We set
U = ↟q z and V = L∖↑z

for some z ∈ L such that z ≪q x and z ≰ y. Then, V ∈ τl ⊆ τqL. Also, by Corollary 4.13, U ∈ τqSc ⊆ τqL. We
observe that x ∈ U, y ∈ V, and U ∩V = ∅. Thus, τqL is Hausdorff.
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